VIBRATIONAL SPECTRA OF TETRAETHYLALUMINATE ANIONS

CHARLES A. WILKIE

Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 (U.S.A.) (Received April 20th, 1971)

SUMMARY

The vibrational spectra of LiAlEt₄ and NaAlEt₄ are reported. It is concluded that the former has D_{2d} symmetry and that the latter has T_d symmetry.

The X-ray crystal structures of several tetraalkylaluminum compounds^{1.2} have been reported. LiAl(C_2H_5)₄¹ may be represented as an infinite chain with D_{2d} symmetry; KAl(CH₃)₄ has T_d symmetry². Mach³ has reported the infrared spectra of Li- and NaAl(CH₃)₄ and Li- and NaAl(C_2H_5)₄. He concludes tetrahedral symmetry for both ethyl compounds, and the two methyl compounds are analyzed in terms of C_{2v} symmetry. We have recently reported infrared and Raman studies on LiAl(CH₃)₄⁴, which support the expected D_{2d} symmetry. We now wish to make known our results on LiAl(C_2H_5)₄ and NaAl(C_2H_5)₄.

TABLE 1

SELECTION RULES" FOR M SKELETAL VIBRATIONS OF MR4

Point group	Stretching modes	Bending modes		
$ \frac{T_d}{D_{2d} = V_d} $ $ \frac{C_{3r}}{C_{2r}} $	$A(R) + T_{2}(I, R)$ $A(R) + B_{2}(I, R) + E(I, R)$ 2A(I, R) + E(I, R) $2A(I, R) + B_{1}(I, R) + B_{2}(I, R)$	$E(R) + T_2(I, R)$ $A(R) + B_1(R) + B_2(I, R) + E(I, R)$ A(I, R) + 2E(I, R) $2A(I, R) + A_2(R) + B_1(I, R) + B_2(I, R)$		

" I, IR active; R, Raman active.

Four possible symmetries may be considered for $MA1R_4^-$ compounds; the selection rules for these are tabulated in Table 1. The spectrum may be divided into three regions: ethyl vibrations (our results are in accord with Mach³ and will not be given here); aluminum-carbon vibrations and cation active vibrations.

RESULTS AND DISCUSSION

$LiAl(C_2H_5)_4$

Absorptions at 618, 526 and 468 cm⁻¹ in the Raman spectrum correspond to absorptions at 616 and 527 cm⁻¹ in the IR and may be assigned as the aluminum-carbon stretching modes expected for D_{2d} symmetry. The bending vibrations occur at

279, 143, 109 and 95 cm⁻¹ in the Raman spectrum. In the IR only the first two are predicted to be active; these are observed at 283 and 131 cm⁻¹. Two additional absorptions below 650 cm⁻¹ are observed in the infrared. They show a lithium isotope effect and thus must represent Li–C modes. These occur at 256 and 312 cm⁻¹ in ⁷LiAl(C_2H_5)₄, moving to 262 and 326 cm⁻¹ in ⁶LiAl(C_2H_5)₄. These vibrations are absent in the Raman spectrum indicating that the lithium-carbon interaction is substantially ionic⁵. Lithium-carbon frequencies have been observed in the same frequency region in LiAl(CH₃)₄ and Li₂Zn(CH₃)₄ with the same lack of Raman activity⁴.

Mach³ has assigned the 615 cm⁻¹ band as a CH₂ rocking mode and 526 cm⁻¹ as the only infrared active aluminum-carbon frequency. He suggests tetrahedral symmetry, in opposition to the X-ray study. The results herein presented are in excellent agreement with D_{2d} symmetry, as expected from the X-ray study.

$NaAl(C_2H_5)_4$

The Raman and infrared spectra of this compound are substantially simpler than those of $\text{LiAl}(C_2H_5)_4$, indicating a higher symmetry for the sodium compound. Aluminum-carbon stretching frequencies occur at 556 cm⁻¹ in the IR and 564 and 492 cm⁻¹ in the Raman. The bending modes occur at 345 cm⁻¹ in the IR and 340 and 302 cm⁻¹ in the Raman. There is only one low frequency band, a very broad band centered at 132 cm⁻¹ and this may be a lattice mode involving the sodium cation and the tetraethylaluminate anion. These results suggest T_d symmetry for NaAl(C_2H_5)₄, in agreement with Mach. All frequencies are collected and assigned in Table 2.

TABLE 2

INFRARED AND RAMAN SPECTRA OF LITHIUM AND SODIUM TETRAETHYLALUMINATES⁴

Assignment	⁷ LiAl(C₂H₅)₄		⁶ LiAl(C ₂ H ₅) ₄		$NaAl(C_2H_5)_4$	
	IR	Raman	IR	Raman	IR	Raman
v(Al-C)	616sh	618m	616sh	618m		
v(Al-C)	527s	526m	527s	526m	556s	564m
v(Al-C)		, 468s		468s		492s
v(Li-C)	312m		326m			
δ (Al-C)	283m	279m	283m	279m	345m	340m
v(Li–C)	256m		262m			
δ (AI–C)	131m	143m	130m	143m		302m
v(Na-C)						132brs
$\delta(AI-C)$		109s		109s		
$\delta(AI-C)$		95s		95s		

" In cm⁻¹; s=strong, m=medium, w=weak, br=broad.

The frequencies for the ethyl compounds are somewhat lower than the analogous frequencies in the methyl compounds, as has been observed for other metal alkyls⁶. The differences in the spectra of $LiAl(C_2H_4)_4$ and $NaAl(C_2H_5)_4$ indicate that the lithium cation is much more able than sodium to interact with the anion.

J. Organometal. Chem., 32 (1971) 161-163

EXPERIMENTAL SECTION

Preparation of LiAl(C_2H_5)₄ and NaAl(C_2H_3)₄ was carried out by heating the metal with Al(C_2H_5)₃ in toluene at reflux under vacuum conditions. Filtration of the hot reaction mixture gave the desired compound³. The spectral samples samples were prepared in the dry-box using the Nujol technique. CsI plates and polyethylene plates were used for the infrared investigations. For Raman work the powered dry sample was sealed in a capillary tube. Spectra were obtained on a Beckman IR-12 (4000–200 cm⁻¹), a Hitachi–Perkin–Elmer FIS-3 (410–30 cm⁻¹), and a Spex Ramalog Double Spectrometer with an argon ion laser source.

ACKNOWLEDGEMENT

The partial support of the Marquette University Committee on Research is gratefully acknowledged.

REFERENCES

1 R. L. GERTEIS, R. E. DICKERSON AND T. L. BROWN, Inorg. Chem., 3 (1964) 872.

- 2 R. WOLFRUM, G. SAUERMAN AND E. WEISS, J. Organometal. Chem., 18 (1969) 27.
- 3 K. MACH, J. Organometal. Chem., 2 (1964) 410.
- 4 J. YAMAMOTO AND C. A. WILKIE, Inorg. Chem., 10 (1971) 1129.
- 5 J. H. B. GEORGE, J. A. ROLFE AND L. A. WOODWARD, Trans. Faraday Soc., 49 (1953) 375.
- 6 W. J. LEHMANN, C. O. WILSON JR. AND I. SHAPIRO, J. Chem. Phys., 28 (1958) 781.

J. Organometal. Chem., 32 (1971) 161-163